因为专业
所以领先
一、硅晶圆制造与切割
晶圆是制作硅半导体IC所用之硅晶片,状似圆形,故称晶圆。材料是「硅」, IC(Integrated Circuit)厂用的硅晶片即为硅晶体,因为整片的硅晶片是单一完整的晶体,故又称为单晶体。但在整体固态晶体内,众多小晶体的方向不相,则为复晶体(或多晶体)。
晶圆是硅元素加以纯化,经过照相制版、研磨、抛光、切片等程序将多晶硅融解拉出单晶硅棒,然后切割成一片片晶圆。
二、光学显影
光学显影是在感光胶上经过曝光和显影的程序,把光罩上的图形转换到感光胶下面的薄膜层或硅晶上。光学显影主要包含了感光胶涂布、烘烤、光罩对准、 曝光和显影等程序。
曝光方式有紫外线、X射线、电子束、极紫外光等。
三、蚀刻技术
蚀刻技术(Etching Technology)是将材料使用化学反应物理撞击作用而移除的技术。可以分为:
湿蚀刻(wet etching):湿蚀刻所使用的是化学溶液,在经过化学反应之后达到蚀刻的目的。
干蚀刻(dry etching):干蚀刻则是利用一种电浆蚀刻(plasma etching)。电浆蚀刻中蚀刻的作用,可能是电浆中离子撞击晶片表面所产生的物理作用,或者是电浆中活性自由基(Radical)与晶片表面原子间的化学反应,甚至也可能是以上两者的复合作用。
四、CVD化学气相沉积
这是利用热能、电浆放电或紫外光照射等化学反应的方式,在反应器内将反应物(通常为气体)生成固态的生成物,并在晶片表面沉积形成稳定固态薄膜(film)的一种沉积技术。CVD技术是半导体IC制程中运用极为广泛的薄膜形成方法,如介电材料(dielectrics)、导体或半导体等薄膜材料几乎都能用CVD技术完成。
常用的CVD技术有:
(1)常压化学气相沉积(APCVD);
(2)低压化学气相沉积(LPCVD);
(3)电浆辅助化学气相沉积(PECVD)
较为常见的CVD薄膜包括有:
■ 二气化硅(通常直接称为氧化层)
■ 氮化硅
■ 多晶硅
■ 耐火金属与这类金属之其硅化物
CVD的反应机制主要可分为五个步骤:
(1)在沉积室中导入气体,并混以稀释用的惰性气体构成「主气流(mainstream)」;
(2)主气流中反应气体原子或分子通过边界层到达基板表面;
(3)反应气体原子被「吸附(adsorbed)」在基板上;
(4)吸附原子(adatoms)在基板表面移动,并且产生化学反应;
(5)气态生成物被「吸解(desorbed)」,往外扩散通过边界层进入主气流中,并由沉积室中被去除。
五、物理气相沉积(PVD)
这主要是一种物理制程而非化学制程。此技术一般使用氩等钝气,藉由在高真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质(通常为铝、钛或其合金)如雪片般沉积在晶圆表面。
PVD以真空、测射、离子化或离子束等方法使纯金属挥发,与碳化氢、氮气等气体作用,加热至400~600℃(约1~3小时)后,蒸镀碳化物、氮化物、氧化物及硼化物等1~10μm厚之微细粒状薄膜。
PVD可分为三种技术:
(1)蒸镀(Evaporation);(2)分子束磊晶成长(Molecular Beam Epitaxy;MBE);(3)溅镀(Sputter)
解离金属电浆是最近发展出来的物理气相沉积技术,它是在目标区与晶圆之间,利用电浆,针对从目标区溅击出来的金属原子,在其到达晶圆之前,加以离子化。离子化这些金属原子的目的是,让这些原子带有电价,进而使其行进方向受到控制,让这些原子得以垂直的方向往晶圆行进,就像电浆蚀刻及化学气相沉积制程。这样做可以让这些金属原子针对极窄、极深的结构进行沟填,以形成极均匀的表层,尤其是在最底层的部份。
六、化学机械研磨技术
化学机械研磨技术(化学机器磨光, CMP)兼具有研磨性物质的机械式研磨与酸碱溶液的化学式研磨两种作用,可以使晶圆表面达到全面性的平坦化,以利后续薄膜沉积之进行。
在CMP制程的硬设备中,研磨头被用来将晶圆压在研磨垫上并带动晶圆旋转,至于研磨垫则以相反的方向旋转。在进行研磨时,由研磨颗粒所构成的研浆会被置于晶圆与研磨垫间。影响CMP制程的变量包括有:研磨头所施的压力与晶圆的平坦度、晶圆与研磨垫的旋转速度、研浆与研磨颗粒的化学成份、温度、以及研磨垫的材质与磨损性等等。
七、光罩检测
光罩是高精密度的石英平板,是用来制作晶圆上电子电路图像,以利集成电路的制作。光罩必须是完美无缺,才能呈现完整的电路图像,否则不完整的图像会被复制到晶圆上。光罩检测机台则是结合影像扫描技术与先进的影像处理技术,捕捉图像上的缺失。
当晶圆从一个制程往下个制程进行时,图案晶圆检测系统可用来检测出晶圆上是否有瑕疵包括有微尘粒子、断线、短路、以及其它各式各样的问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。
一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。
八、清洗
清洗的目的是去除金属杂质、有机物污染、微尘与自然氧化物;降低表面粗糙度;因此几乎所有制程之前或后都需要清洗。
九、晶片切割(Die Saw)
晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。首先必须进行晶圆黏片,在晶圆上贴一层胶带,然后送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撑避免了胶带的皱摺与晶粒之相互碰撞。
十:焊线(Wire Bond)
将集成电路内部的线路引出,并向外拉出引线,称之为打线,作为与外界电路板连接之用。
十一、封胶(Mold)
封胶之主要目的为防止湿气由外部侵入、以机械方式支 持导线、内部产生热量之去除及便于手持。其过程为将导线架置于框架上并预热,再将框架置于压模机上的构装模上,再以树脂充填并待硬化。
十二、剪切/成形(Trim /Form)
剪切之目的为将导线架上构装完成之晶粒独立分开,并把不需要的连接用材料及部份凸出之树脂切除(dejunk)。成形之目的则是将外引脚压成各种预先设计好之形状,以便于装置于电路版上使用。
十三:芯片测试和检验过程
这些测试和检验就是保证封装好芯片的质量,保证其良率的。
芯片封装清洗:
研发的水基清洗剂配合合适的清洗工艺能为芯片封装前提供洁净的界面条件。
水基清洗的工艺和设备配置选择对清洗精密器件尤其重要,一旦选定,就会作为一个长期的使用和运行方式。水基清洗剂必须满足清洗、漂洗、干燥的全工艺流程。
污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。
这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。