IGBT 失效场合、机理、原因与IGBT功率器件清洗
IGBT(Insulated GateBipolar Transistor),绝缘栅双极型晶体管,是由(Bipolar Junction Transistor,BJT)双极型三极管和绝缘栅型场效应管(Metal Oxide Semiconductor,MOS)组成的复合全控型电压驱动式功率半导体器件, 兼有(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)金氧半场效晶体管的高输入阻抗和电力晶体管(Giant Transistor,GTR)的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。但仍无法抵抗来自外界的干扰和自身系统引起的各种失效问题。
IGBT 失效场合、机理、原因
一、IGBT失效场合:
来自系统内部: 如电力系统分布的杂散电感、电机感应电动势、负载突变都会引起过电压和过电流;
来自系统外部: 如电网波动、电力线感应、浪涌等。
归根结底,IGBT失效主要是由集电极和发射极的过压/过流和栅极的过压/过流引起。
二、IGBT失效机理:
IGBT由于上述原因发生短路,将产生很大的瞬态电流——在关断时电流变化率di/dt过大。漏感及引线电感的存在,将导致IGBT集电极过电压,而在器件内部产生擎住效应,使IGBT锁定失效。同时,较高的过电压会使IGBT击穿。IGBT由于上述原因进入放大区,使管子开关损耗增大。
三、IGBT传统防失效机理:
尽量减少主电路的布线电感量和电容量,以此来减小关断过电压;在集电极和发射极之间,放置续流二极管,并接RC电路和RCD电路等;在栅极,根据电路容量合理选择串接阻抗,并接稳压二极管防止栅极过电压。
四、引起IGBT失效的原因:
1、电容失效或漏电:
从而引起IGBT损坏。经检查其他元件无问题的时候 ,更换0.3UF和400V电容。
2、IGBT管激励电路异常:
震荡电路输出的脉冲信号,不能直接控制IGBT饱和,导通和截止,必须通过激励脉冲信号放大来完成。
3、同步电路异常:
同步电路的主要作用是保证加到IGBT管G级上的开关脉冲前沿与IGBT管上VCE脉冲后延同步当同步电路工作出现异样,导致IGBT管瞬间击穿。
4、工作电压异常:
电压出现异常时,会使IGBT管激励电路,风扇散热系统及LM339工作失常导致IGBT上电瞬间损坏。
5、散热系统异常:
在大电流状态下其发热量也大,如果散热系统出现异常,会导致IGBT过热损坏。
6、单片机异常:
单片机内部会因为工作频率异常而烧毁IGBT。
7、VCE检测电路异常:
VCE检测将IGBT管集电极上的脉冲电压通过,电阻分压,此电压的信息变化传到CPU,做出各种相应的指令。当VCE检测电路出现故障的时候,VEC脉冲幅度。超过IGBT管的极限值,从而导致IGBT损坏。
五、IGBT功率器件清洗
IGBT功率器件清洗
为应对能源危机和生态环境恶化等问题,世界各国均在大力发展新能源汽车、高压直流输电等新兴应用,促进了大功率电力电子变流装置的广泛应用。大功率变流装置的可靠性对这些应用而言十分重要。装置的可靠性与其核心器件IGBT密切相关。
目前,大量的IGBT仍在采用传统的正溴丙烷等溶剂清洗清洗,随着对环保的管控和对产品可靠性的要求不断提高,原有的传统溶剂清洗已不能满足IGBT清洗。对此,合明提出新型的IGBT清洗方案。
半水基清洗工艺解决方案,采用 专利配方,可在清洗IGBT凹槽内存在大量的锡膏残留的同时去除金属界面高温氧化膜,更含有保护芯片独特的材料;配方材料亲水性强,清洗后易于用水漂洗干净。
欢迎使用 半水基清洗剂清洗IGBT功率器件。
以上便是IGBT功率器件清洗剂厂,IGBT功率器件的DCB衬底功能介绍,希望可以帮到您!
【阅读提示】
以上为本公司一些经验的累积,因工艺问题内容广泛,没有面面俱到,只对常见问题作分析,随着电子产业的不断更新换代,新的工艺问题也不断出现,本公司自成立以来不断的追求产品的创新,做到与时俱进,熟悉各种生产复杂工艺,能为各种客户提供全方位的工艺、设备、材料的清洗解决方案支持。
【免责声明】
1. 以上文章内容仅供读者参阅,具体操作应咨询技术工程师等;
2. 内容为作者个人观点, 并不代表本网站赞同其观点和对其真实性负责,本网站只提供参考并不构成投资及应用建议。本网站上部分文章为转载,并不用于商业目的,如有涉及侵权等,请及时告知我们,我们会尽快处理;
3. 除了“转载”之文章,本网站所刊原创内容之著作权属于
网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。“转载”的文章若要转载,请先取得原文出处和作者的同意授权;
4. 本网站拥有对此声明的最终解释权。