banner

射频芯片:CMOS是构建发射器和接收器关键组件的首选技术与射频芯片封装清洗介绍

发布日期:2023-07-14 发布者: 浏览次数:5802
年复一年,越来越多的用户通过无线方式传输越来越多的数据。为了跟上这一趋势并使数据传输更快、更高效,第五代移动通信 (5G) 正在推出,业界已经在关注未来的发展。5G 可实现 10Gbit/s 的峰值数据速率,而 6G 预计从 2030 年起将以 100Gbit/s 的速度运行。除了应对更多数据和连接之外,研究人员还研究下一代无线通信如何支持自动驾驶和全息存在等新用例。

为了实现极高的数据速率,电信行业一直在提高无线信号的频率。虽然 5G 最初使用 6GHz 以下频段,但针对 28/39GHz 的产品已经展示。此外,由于 FR3 (6-20GHz) 频段能够平衡覆盖范围和容量,因此人们对 5G 网络使用 FR3 (6-20GHz) 频段越来越感兴趣。对于 6G,100GHz 以上的频率正在讨论中。

image.png

转向更高的频率有几个优点:可以使用新的频段,解决现有频段内的频谱稀缺问题。而且,工作频率越高,就越容易获得更宽的带宽。原则上,高于 100GHz 的频率和高达 30GHz 的带宽允许电信运营商在无线数据链路中使用低阶调制方案,从而降低功耗。较高的频率还与较小的波长 (λ) 相关。随着天线阵列尺寸随λ 2缩放,天线阵列可以排列得更密集。这有助于更好的波束成形,这种技术可确保大部分传输能量到达目标接收器。

但更高频率的出现是有代价的。如今,CMOS是构建发射器和接收器关键组件的首选技术。其中包括前端模块内的功率放大器,用于向天线发送射频信号或从天线发送射频信号。工作频率越高,基于 CMOS 的功率放大器就越难以以足够高的效率提供所需的输出功率。

image.png

这就是GaN 和 InP等技术发挥作用的地方。由于出色的材料特性,这些 III/V 族半导体更有可能在高工作频率下提供所需的输出功率和效率。例如,GaN具有高电流密度、高电子迁移率和大击穿电压。高功率密度还可以实现较小的外形尺寸,从而在相同性能的情况下减小总体系统尺寸。

升级的机遇与挑战

但如果我们考虑成本和集成的简易性,GaN 和 InP 器件技术还无法与基于 CMOS 的技术完全竞争。III/V 器件通常在小型且昂贵的非硅衬底上制造,依赖于不太适合大批量制造的工艺。将这些器件集成在 200 或 300mm 硅晶圆上是一种有趣的方法,可以在保持卓越射频性能的同时实现整体优化。硅基板不仅更便宜,而且兼容 CMOS 的工艺还可以实现大规模制造。

在 Si 平台上集成 GaN 和 InP需要结合新的晶体管和电路设计方法、材料和制造技术。主要挑战之一与大晶格失配有关:InP 为 8%,GaN 为 17%。众所周知,这会在层中产生许多缺陷,最终降低器件性能。
此外,我们还必须将基于 GaN-on-Si 和 InP-on-Si 的组件与基于 CMOS 的组件共同集成到一个完整的系统中。GaN 和 InP 技术最初将用于实现前端模块内的功率放大器。此外,低噪声放大器和开关可能受益于这些化合物半导体的独特性能。但最终,校准、控制和波束形成仍然需要 CMOS。
在其高级射频计划中,imec 与其行业合作伙伴一起探索在大尺寸硅晶圆上集成 GaN 和 InP 器件的各种方法,以及如何实现它们与 CMOS 组件的异构集成。正在评估不同用例(基础设施(例如 FWA)以及用户设备)的优缺点。

改进 GaN-on-Si 技术的射频性能

根据起始衬底的不同,GaN 技术有多种类型:GaN bulk substrates, GaN-on-SiC和GaN-on-Si。如今,GaN-on-SiC得到了广泛探索,并已用于基础设施应用,包括 5G 基站。GaN-on-SiC比GaN bulk substrates技术更具成本效益,而且碳化硅是一种出色的热导体,有助于散发高功率基础设施应用中产生的热量。然而,成本和基板尺寸有限使其不太适合大规模生产。

相反,GaN-on-Si具有扩大到 200mm 甚至 300mm 晶圆的潜力。得益于多年来电力电子应用的创新,GaN在大尺寸Si衬底上的集成取得了巨大进展。但硅基氮化镓技术还需要进一步改进,以实现最佳射频性能。主要挑战在于实现与 GaN-on-SiC 相当的大信号和可靠性性能以及提高工作频率。这需要在材料堆叠设计和材料选择方面不断创新,缩短 HEMT 的栅极长度,抑制寄生效应,并保持尽可能低的射频色散。
Imec 的射频 GaN-on-Si 工艺流程从在 200mm Si 晶圆上生长(通过金属有机化学气相沉积 (MOCVD))外延结构开始。该结构由专有的 GaN/AlGaN 缓冲结构、GaN 沟道、AlN 间隔物和 AlGaN 势垒组成。具有 TiN 肖特基金属栅极的 GaN HEMT 器件随后与(低温)3 级 Cu 后道工艺集成。
近期,imec的GaN-on-Si平台取得了具有竞争力的成果,输出功率和功率附加效率(PAE)首次接近GaN -on-SiC技术。PAE 是评估功率放大器效率的常用指标,它考虑了放大器增益对其整体效率的影响。

image.png

图 3 - 硅基氮化镓基准测试数据。红色的 IMEC 数据是 GaN-on-Si 器件的最佳报告之一,可与 GaN-on-SiC 衬底相媲美(如 IEDM 2022 上介绍的)。

通过建模活动补充技术开发将最终有助于实现更好的性能和可靠性。例如,在 IEDM 2022 上,imec 推出了一个仿真框架,可以更好地预测射频设备中的热传输。在硅基氮化镓 HEMT 的案例研究中,模拟显示峰值温升比之前预测的高出三倍。诸如此类的建模工作为在开发阶段早期优化射频器件及其布局提供了进一步的指导。

走向异构集成

最终,III/V-on-Si 功率放大器必须与负责校准和控制等功能的基于 CMOS 的组件相结合。Imec 正在研究各种异构集成选项,权衡它们在各种用例中的优缺点。

先进的层压基板技术是将不同射频元件集成到系统级封装中的最常见方法,并且正在进行优化以使其能够适应更高的频率。
此外,imec还探索更先进的异构集成选项,包括2.5D中介层和3D集成技术。
特别是对于 100GHz 以上的频率,需要注意的是天线模块开始定义收发器可用的区域。事实上,当频率较高时,波长会减小,天线阵列的面积也会相应缩小。在 100GHz 以上,天线尺寸变得小于前端模块尺寸,而前端模块尺寸几乎不会随着频率的增加而缩小。对于大型天线阵列配置,一个有趣的选择是将射频前端模块移至天线阵列下方。这就是3D 集成技术的用武之地(die-to-wafer or 和wafer-to-wafer)发挥作用,实现前端模块和天线模块之间的短且明确的连接。然而,热管理仍然是 3D 集成的一个重要问题,并且能够提供有效的散热器至关重要。在imec,我们正在进行全面的系统技术协同优化 (STCO) 分析,以评估用于 3D 集成的不同技术,并从系统级角度指导技术选择。
对于手持设备,减少天线数量可以放松限制,2.5D interposer技术被认为是一种有趣的方法。这种异构集成选项使用具有光刻定义连接的层堆栈,甚至是硅通孔,以在基于 III/V 和 CMOS 的组件之间进行通信。在这种情况下,III/V 器件位于 CMOS 芯片旁边,可以实现更好的热管理,因为两个芯片都可以与散热器直接接触。然而,这种架构仅允许一维波束控制。我们目前正在评估 2.5D 中介层技术的硬件实现,研究基板、电介质和再分布层的最佳组合,以最大限度地减少损耗。例如,我们展示了射频定制硅中介层技术的第一个版本,该技术使用标准硅基板、铜半加成互连

image.png

图 75– 封装中集成有 InP 和 CMOS 器件以及天线阵列的 RF Si 内插器的示意图。

总之,最近的升级和集成工作表明,硅基氮化镓和硅基磷化铟可以成为下一代高容量无线通信应用的可行技术。

射频芯片封装清洗: 研发的水基清洗剂配合合适的清洗工艺能为芯片封装前提供洁净的界面条件。

水基清洗的工艺和设备配置选择对清洗精密器件尤其重要,一旦选定,就会作为一个长期的使用和运行方式。水基清洗剂必须满足清洗、漂洗、干燥的全工艺流程。

污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。

这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。

推荐使用 水基清洗剂产品。

 


Tips:

【阅读提示】

以上为本公司一些经验的累积,因工艺问题内容广泛,没有面面俱到,只对常见问题作分析,随着电子产业的不断更新换代,新的工艺问题也不断出现,本公司自成立以来不断的追求产品的创新,做到与时俱进,熟悉各种生产复杂工艺,能为各种客户提供全方位的工艺、设备、材料的清洗解决方案支持。

【免责声明】

1. 以上文章内容仅供读者参阅,具体操作应咨询技术工程师等;

2. 内容为作者个人观点, 并不代表本网站赞同其观点和对其真实性负责,本网站只提供参考并不构成投资及应用建议。本网站上部分文章为转载,并不用于商业目的,如有涉及侵权等,请及时告知我们,我们会尽快处理

3. 除了“转载”之文章,本网站所刊原创内容之著作权属于 网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。“转载”的文章若要转载,请先取得原文出处和作者的同意授权;

4. 本网站拥有对此声明的最终解释权。

公司介绍

公司介绍 Introduction

技术研发中心

技术研发中心 Technology

人才招聘

人才招聘 Recruitment

热门标签
洗板水和酒精哪个效果好洗板水分类线路板清洗光刻机Stepper光刻机Scanner光刻机助焊剂的使用方法助焊剂使用方法助焊剂使用说明半导体工艺半导体制造半导体清洗剂IPC标准印制电路协会国际电子工业联接协会助焊剂锡膏焊锡膏Chip on Substrate(CoS)封装Chip on Wafer (CoW)封装先进封装基板清洗晶圆级封装技术DMD芯片DMD芯片封装DMD是什么半导体封装封装基板半导体封装清洗基板清洗中国集成电路制造年会供应链创新发展大会集成电路制造年会倒装芯片倒装芯片工艺清洗倒装芯片球栅阵列封装FCBGA技术BGA封装技术BGA芯片清洗PCBA线路板清洗印制线路板清洗PCBA组件清洗助焊剂类型如何选择助焊剂助焊剂分类助焊剂选型助焊剂评估PCB通孔尺寸PCB通孔填充方法PCB电路板清洗洗板水洗板水危害助焊剂危害PCBA电路板清洗GJB2438BGJB 2438B-2017混合集成电路通用规范pcb金手指pcb金手指特点pcb金手指作用pcb金手指制作工艺pcb金手指应用领域芯片制造芯片清洗剂芯片制造流程化学蚀刻钢网激光切割钢网电铸钢网混合工艺钢网钢网清洗机钢网清洗剂pcb电路板埋孔pcb电路板通孔pcb电路板清洗FPCFPC焊接工艺FPC焊接步骤扇出型晶圆级封装芯片封装清洗金丝键合球焊键合的工艺微波组件芯片焊后焊盘清洗AlGaN氮化铝镓功率电子清洗SMT贴片DIP插件晶圆级封装面板级封装(PLP)
上门试样申请 136-9170-9838 top
Baidu
map