5G将提升手机的SiP需求(sip系统级封装清洗介绍)
5G将提升手机的SiP需求(sip系统级封装清洗介绍)
5G手机的销量超预期,毫米波5G手机将增加对SiP的需求;苹果AirPods新增降噪功能,继Applewatch以后,也采用SiP技术。
手机轻薄化和高性能需求推动系统级整合:手机用户需要性能持续提升和功能不断增加,及携带的便利性,这两个相互制约的因素影响着过去10多年智能手机的更新换代过程。电子工程逐渐由单个组件开发到集成多个组件,再迈向系统级整合,提升性能,节省空间,并优化续航能力。电子制造行业之前形成晶圆制造、封测和系统组装三个泾渭分明的环节,随着消费电子产品集成度的提升,部分模组、甚至系统的组装跟封测环节在工艺上产生了重叠,业务上产生了竞争或协同。
一、5G将提升手机的SiP需求:当前大范围采用SiP的手机仅有iPhone,5G手机将集成许多射频前端等零部件,在5GSub-6方案中,较先进的双面SiP获得运用。在5G毫米波方案中,集成阵列天线和射频前端的AiP模组将成为主流技术路线。高通已经商用5G毫米波天线模组AiP标准品,每部手机采用三个该模组。天线的效能因手机的外观设计、手机内部空间限制及天线旁边的结构或基板材质不同,会有较大的差异。标准化的AiP天线模组比较难满足不同手机厂商的不同需求,苹果等厂商有望根据自己手机的设计开发自有的订制化AiP天线模组。仅仅苹果的AiP需求有望在3年后达到数十亿美元。在未来,SiP有望整合基带等更多的零部件,进一步提升手机的集成度。高通已成功商业化QSiP模组,将应用处理器、射频前端和内存等400多个零部件放在一个模组中,大大减少主板的空间需求。QSiP工艺也大幅简化手机的设计和制造流程、节省成本和开发时间,并加快整机厂的商业化时间。
苹果穿戴式产品积极运用SiP工艺:穿戴式产品是苹果高度重视的IoT产品,AppleWatch、AirPods两大产品销量持续高增长。AppleWatch功能复杂,自2015年第一代产品就一直采用SiP工艺。其SiP模组集成手表的大部分功能器件在1mm厚度的狭小空间中,包括:CPU、存储、音频、触控、电源管理、WiFi、NFC等30余个独立功能组件,20多个芯片,800多个元器件。10月底发布的AirPodsPro具有主动降噪功能,需要集成许多零部件,也采用了SiP技术,有望带来数十亿美元的SiP需求。穿戴式产品因为便携性和美观度的考虑,空间非常有限,但用户对于穿戴式产品功能的丰富度要求日益提升,SiP技术将大有可为。
二、轻薄化与高性能需求推动模组化和系统级整合
手机轻薄化和高性能需求推动系统级整合。手机用户既需要手机性能持续提升、功能不断增加,也需要携带的便利性,这两个相互制约的因素影响着过去10多年智能手机的更新换代过程:
轻薄化。以iPhone手机为例,从最早机身厚度的约12mm,到iPhoneXS的7.5mm,然而iPhone11的厚度增加到8.5mm。
部分手机厂商已发布成品机型,但5G功能的实现对手机“轻薄”外观带来明显挑战,甚至功耗也不容小觑。早在2018年8月联想就已发布5G手机MOTOZ3,但其5G功能依赖挂载于手机背部、且自带2000mAh电池的5G模块。今年2月底三星正式发布5G版S10,时隔不久华为也于3月正式发布折叠屏5G手机MateX,其中华为MateX由于机身展开厚度仅5.4mm,最后只能将徕卡三摄、5G基带以及4组5G天线放置在侧边凸起。从以上几款手机来看,5G功能的实现还是对手机的“轻薄”外观提出了明显的挑战,甚至功耗也不容小觑。
功能整合形成系统级芯片SoC和系统级封装SiP两大主流。两者目标都是在同一产品中实现多种系统功能的高度整合,其中SoC从设计和制造工艺的角度,借助传统摩尔定律驱动下的半导体芯片制程工艺,将一个系统所需功能组件整合到一块芯片,而SiP则从封装和组装的角度,借助后段先进封装和高精度SMT工艺,将不同集成电路工艺制造的若干裸芯片和微型无源器件集成到同一个小型基板,并形成具有系统功能的高性能微型组件。
受限于摩尔定律的极限,单位面积可集成的元件数量越来越接近物理极限。而SiP封装技术能实现较高的集成度,组合的系统具有较优的性能,是超越摩尔定律的必然选择路径。
相比SOC:
(1)SiP技术集成度高,但研发周期反而短。SiP技术能减少芯片的重复封装,降低布局与排线难度,缩短研发周期。采用芯片堆叠的3DSiP封装,能降低PCB板的使用量,节省内部空间。例如:iPhone7PLUS中采用了约15处不同类型的SiP工艺,为手机内部节省空间。SiP工艺适用于更新周期短的通讯及消费级产品市场。
(2)SiP能解决异质(Si,GaAs)集成问题。手机射频系统的不同零部件往往采用不同材料和工艺,如:硅,硅锗(SiGe)和砷化镓(GaAs)以及其它无源元件。目前的技术还不能将这些不同工艺技术制造的零部件制作在一块硅单晶芯片上。但是采用SiP工艺却可以应用表面贴装技术SMT集成硅和砷化镓裸芯片,还可以采用嵌入式无源元件,非常经济有效地制成高性能RF系统。光电器件、MEMS等特殊工艺器件的微小化也将大量应用SiP工艺。
在过去数十年,电子制造行业形成了晶圆制造、封测和系统组装三个泾渭分明的环节,代表厂商分别是台积电、日月光和鸿海,他们的制造精度分别是纳米、微米和毫米级别。随着消费电子产品集成度的提升,部分模组、甚至系统的组装的精度要求逼近微米级别,跟封测环节在工艺上产生了重叠,业务上产生了竞争或协同。
具体来看,SiP工艺融合了传统封测中的molding、singulation制程和传统系统组装的SMT和系统测试制程。
SIP集合了SMT组件制程工艺和芯片封装工艺,工艺制成中和工艺完成后,都必须对所产生的焊膏、锡膏残留物以及其他的污垢进行彻底的清洗和去除,从而达到组件可靠性的技术要求。
在清洗剂选择中,首先在满足技术要求条件的前提下,首选水基工艺,如水基工艺不能满足工艺制程要求,在材料兼容性上缺乏保障度,其次选择半水基清洗剂,清洗剂选择确定以后,而后要考虑的是实现工艺的设备条件,清洗剂一般来说都有比较宽泛的使用范围,都可以适用于喷淋和超声波清洗工艺,往往SIP清洗工艺制程中,大部分客户为了考虑SIP器件的可靠性和安全性,首选喷淋清洗工艺。
推荐选择 水基清洗剂,水基清洗剂配合喷淋清洗工艺,为了达到极高标准的干净度和对金属材料、非金属材料、化学材料兼容性要求,需要对清洗喷淋的压力、喷淋角度方向、清洗剂温度浓度等等参数进行严格地规范,才可保证全面技术要求。因为技术要求高,往往清洗的工艺窗口非常窄小,每一项指标都需严格控制。
上一篇:FPC焊接工艺及焊接步骤
下一篇:表面贴装技术(SMT)锡膏助焊剂成分作用(锡膏助焊剂清洗的必要性探讨)
【阅读提示】
以上为本公司一些经验的累积,因工艺问题内容广泛,没有面面俱到,只对常见问题作分析,随着电子产业的不断更新换代,新的工艺问题也不断出现,本公司自成立以来不断的追求产品的创新,做到与时俱进,熟悉各种生产复杂工艺,能为各种客户提供全方位的工艺、设备、材料的清洗解决方案支持。
【免责声明】
1. 以上文章内容仅供读者参阅,具体操作应咨询技术工程师等;
2. 内容为作者个人观点, 并不代表本网站赞同其观点和对其真实性负责,本网站只提供参考并不构成投资及应用建议。本网站上部分文章为转载,并不用于商业目的,如有涉及侵权等,请及时告知我们,我们会尽快处理;
3. 除了“转载”之文章,本网站所刊原创内容之著作权属于
网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。“转载”的文章若要转载,请先取得原文出处和作者的同意授权;
4. 本网站拥有对此声明的最终解释权。